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Abstract 
 
Twelve-tone theorists were primarily interested in understanding compositions 
stemming from the Viennese school and seldom regarded music in a purely formal 
way. They observed the all-interval tetrachord, however, and Babbitt proposed the 
hexachord theorem, and such things led gradually to the more general topic of 
homometric sets, where music theorists began to notice that all of this was applicable 
outside Z/12. This led to many new ideas that have been important for me as a 
composer, and I have written quite a few pieces involving particular sets of rhythms 
that would not have been conceivable without these theoretical discoveries. I explain 
a few of these here. 
 
Precedents from 12-tone theory 
 
Allen Forte was well aware of homometric relationships, which he referred to as “the 
Z relationship” in The Structure of Atonal Music (1973). He spoke of the all-interval 
tetrachords (0,1,3,7) and (0,1,4,6), and went on further to point out that three pairs of 
five-note chords and 15 pairs of six-note chords also have the Z relationship. At the 
same time he missed some important points. For example, he mentioned that “it is 
perhaps not insignificant that 6-Z/29 is the complement of 6-Z-50”, while in fact we 
now know that this is completely necessary. Of course, Forte was interested in these 
hexachords primarily because he found a few of them in a Stravinsky score, and he 
wasn’t really thinking about general structure and the music of the future. Still, his 
work reflected that of other researchers, like David Lewin, whose Generalized 
Musical Intervals and Transformations was also published in 1973, and which offered 
a complicated early proof of the hexachord theorem, showing that any subset of six 
notes has the same intervallic content as the other six notes of the chromatic scale. 
Shorter and more convincing proofs were later offered by J. E. Iglesias, Noam Elkies, 
Dmitri Tymoscko, Emmanuel Amiot, and Godfried T. Toussaint, and we now know 
that this can be generalized to sets of any even number when divided into two 
halves. With a length of 14, for example, a seven-note formation like (0,1,2,3,4,5,8), 
contains the same total distances between its elements as does its complement 
(0,1,2,3,4,6,7), with five distances of 1, three distances of 2, four distances of 3, two 
distances of 5, one distance of 6, and one of 7. 
 
In that same period two other 12-tone theorists, Terry Winograd and Carleton Gamer, 
studied scales in which the distances between the notes each arrived in another 
quantity. They called these “deep scales” and this has led to “deep rhythms”, which I 
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will go into later. Jack Douthett and other theorists arrived at other important results 
by forming scales with “almost equal” distances, and all these discoveries are 
important today. The ideas of “deep” and “almost even” formations, for example, can 
now be generalized and applied to rhythm in a much broader manner. 
 
 
Beyond Z/12 
 
The big limitation with 12-tone theory was the idea of octave equivalence. If all 
octaves are equal, and one is working with pitches on the chromatic scale, then there 
is no reason to consider formations with more or less than 12 elements. Rhythmic 
theory had to be much more general because, even if one considers only regular 
metrical rhythms, they can come in any length.  
 
These limitations are particularly clear if one considers homometric pairs. The idea 
of two subsets with the same total interval content was first proposed in 1940 by 
Lindso Patterson, who was  a crystallographer and thus prepared to investigate 
crystals of any size, but for the music theorists of the 60s and 70s, only the size 12 
cases noted by Forte seemed relevant. By now homometric formations of many sizes 
are often discussed, and Franck Jedrzejewski has calculated a complete list of 
homometric pairs (and triplets and more) all the way to cycles of length 24. These are 
numerous and the list comes to over 1000 pages. 
 
Jack Douthett and others investigated maximally even scales, meaning scales that 
almost divided the octave into equal parts. Both the pentatonic and the diatonic 
scales do this, though for a long time no one thought about maximally even rhythms. 
 
Terry Winograd and Carleton Gamer defined the pentatonic scale as deep because if 
one places the set (0,2,4,7,9) in a circle of 12 points and counts the 10 distances 
between the five notes modulo 12 one finds distances occurring four different times. 
 
3 distances of 2 (0 to 2, 2 to 4, 7 to 9) 
2 distances of 3 (4 to 7, 9 to 12) 
1 distance of 4 (0 to 4) 
4 distances of 5 (2 to 7, 2 to 9, 7 to12, 9 to 14) 
 
They further observed that the 21 distances between the seven notes of the diatonic 
scale also give unique quantities, and this, like the idea of maximally even scales, 
seemed to be yet another justification for the universality of the traditional scales and 
a good reason for considering their formations “deep.” 
 
Simha Arom was an ethnomusicologist, who observed what he called the rhythmmic 
oddity. He found in central Africa that rhythms in cycles of 16 hardly ever contain 
notes eight beats apart. The fact that the rhythms were never divided into two halves 
seemed to explain a lot about the syncopation of African music, and this is another 
observation that has become useful as one considers the theory of rhythm today. 
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Jon Wild of McGill University in Montreal has researched another category, which he 
calls FLIDs, that is, subsets with “flat interval distributions”. The all-interval 
tetrachords are FLIDs, because the interval distribution there is what Forte called 
(111111), with six interval occurring the same number of times. Such formations are 
rather rare, but Wild computed them all the way to the 15-note chords in cycles of 31. 
Curiously there are more in Z/31 than in any smaller cycles, and perhaps he or 
someone will explain why someday. FLIDs are generally rare, however. Wild sent me 
his compete list, all on one page. 
 
I found it particularly interesting that a seven-note FLID and an eight-note FLID both 
occur in a cycle of length 15: (0,1, 2, 4, 5, 8,10) and (0,1, 2, 3, 5, 7, 8,11). The first 
formation has seven differences three times each and the second has seven 
differences four times each, and furthermore the two subsets are complementary. I 
don’t find any particular regularity or irregularity or other characteristics that 
distinguish these rhythms from rhythms that are not FLIDs. Wild wrote that he had 
been trying for years to define whether FLIDs are more or less predictable than other 
rhythms, or to find other universal FLID characteristics, but that he still hadn’t been 
able to do so either.  
 
Other researchers might also be mentioned no doubt, but I will end with a reference 
to Godfried T. Toussaint’s The Geometry of Musical Rhythm (2013) which is the only 
book I know that brings together all of these things, and others. 
 
My own music was affected by all of this, as I had been looking for clear 
mathematical structures ever since the Rational Melodies (1982) and Music for 88 
(1988). One thing that particularly interested me was putting together sets that are 
equal and complete, as I explain in the chapter “Equal and Complete” in Other 
Harmony, When everything has been included, when nothing is omitted and nothing 
is repeated, the structure is quite nice logically, and usually this logic can be heard as 
well.  
 
Rhythms equivalent to harmonies 
 

Jeffrey Dinitz, the co-author of The Handbook of Combinatorial Rhythms, had already 
been very helpful when I wrote to him with questions about block designs and related 
subjects, and he had even included a reference to my Block Design for Piano (2005) 
as an example of a 4-(12,6,10) block design in the latest edition of his Handbook. At 
one point I was interested in Room squares, first proposed by the Australian T. G. 
Room in 1955. I knew that a side-7 Room square is a square containing two-note 
subsets of elements 0 to 7 in such a way that all eight elements fall in each row and 
in each column, filling four of the seven columns and four of the seven rows, but I 
didn’t know how to put them together to make a set of rhythms, so I wrote to Dinitz 
with this question: Is it possible to construct five Room squares of side 7 such that 
each of the 35 rows has a different set of filled cells? A complete Room square might 
look like this, where the infinity sign represents element 7. Four different places are 
filled in each row and in each column. But how could this square be multiplied by five 
in order to have all 35 of the 7-choose-4 rhythms? 
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Finding the other four squares that complete this set of rhythms is pretty easy for a 
block design specialist, but after clarifying that, Dinitz and his bright graduate student, 
Susan Janiszewski, went on to calculate the Hadamard Room Squares of Side 11, 
which enabled them to deduce 11 by 11 squares. Incidentally, I am told that 
Hadamard matrices are of general interest to mathematicians in relation to Fugede’s 
conjecture and many other mathematical questions: 

 

∞0   15  46 23 

34 ∞1   26  50 

61 45 ∞2   30  

 02 56 ∞3   41 

52  13 60 ∞4   

 63  24 01 ∞5  

  04  35 12 ∞6 
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              This Hadamard matrix can be described also as an (11,6,3) block design, because 
the 11 elements are distributed into blocks of six elements, and each pair of elements 
comes together three times, both in the rows and in the columns, but for me it was a 
neat set of six-note rhythms. To make a Large (11, 6, 3) block design, containing all 
462 11-choose-6 rhythms, the Vermont mathematicians had to calculate 42 such 
squares, but they somehow did it and sent me the numbers.  

I was amazed at the mathematical beauty I saw when I looked at those 42 (11,6,3) 
squares (as a non-mathematician, I was tempted to call it a “miracle”), and I 
immediately began composing Vermont Rhythms (2006) for Klang, a fine sextet in 
The Hague. The mathematical logic was so clear that the music almost wrote itself.  
Composing mathematical music is often like that when the numbers are so clear that 
notes can be assigned to them in only one way, and sometimes the form and 
duration is also dictated. In this case the 42 solutions divided neatly into seven 
sections of six rotating textures in a 17-minute piece. Each section contained 11 
measures of 11 beats, though I wrote the music in 12/8, with the twelfth beat always 
silent. To give a simple example, and avoid the confusion of all the transpositions, I 
will just show the piano part of one of the 11-bar sections. The chords are built on an 
invented 11-note scale, the rhythms fall on the first 11 beats of each measure, and 
the formation of the chords and the rhythms is always the same. I added the 
numbers of the beats and scale degrees for this explanation. 
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This was the first time I wrote a piece where the formation of the chords mirrored the 
formation of the rhythms, but the Vermont Rhythms sextet was followed by Munich 
Rhythms for orchestra (2010), and Dutch Rhythms for two pianos (2018) which also 
mirror notes and rhythms. I want to show you also a bit of Dutch Rhythms, because 
the procedure is different in this case. Here the pitches and rhythms are calculated by 
permutations of twos and threes.  

My teacher Morton Feldman said once “The history of music is the history of notation. 
Every new idea requires a new notation,” and a new notation seemed necessary 
here. Feldman saw notation changing a lot through all the graphic experiments and 
chance procedures with numbers and vague drawings and all, and it was especially 
clear that pieces like the Cage « variations », which had to be different every time, 
had to come out of some new kind of instructions. For me the story is much older 
than that. When somebody around 1600 wrote « vibrato » on a string part for the first 
time, that changed string music for three centuries. Then one day Bartok wrote « non 
vibrant » on a string part, and that was another new notation that made another new 
music. The problem of finding the right notation, like the problem of letting the music 
write itself, reflects something else that Feldman said very often. “Just let the music 
do what it wants to do.” 
 
It can be difficult to read seven-note chords correctly when the differences are 
minimal, so I followed Feldman’s advbice and invented a new notation notating the 
rhythm of the repeated chords on the upper staff and the seven pitches of the chords 
on the lower staff. For this article I have also inserted the six digits of the 
permutations, indicating the intervals between the notes in ascending order in the 
lower system, the first piano, and in descending order in the upper system, the 
second piano. The rhythms come from the same set of permutations, with 2 
corresponding to a note lasting one beat and 3 corresponding to a note lasting two 
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beats. It is striking for me that one can hear a relationship between the tiny changes 
in the rhythm and the tiny changes that happen in the chords at the same time. Of 
course, sometimes one has palindromes like 322223 or 223322, in which case the 
two pianists play the same chords, and one can hear that too.  

 

 
 
Rhythms from a graph 
 
A piece called Falling Thirds with Drums (2011) expresses a collection of all the ways  
two beats can be connected around a circle. Consider a cycle of three beats (0,1,2) 
and play all the connections possible between two different beats, always following 
the cycle clockwise. Then continue with circles of four beats (0,1,2,3), five beats 
(0,1,2,3,4) and more, always following a systematic graph, where only one of the 
three beats changes with each combination.  
 
I often calculate my music by drawing diagrams, and that was particularly true in this 
case. The piece continues with larger and larger configurations, ending with 10 
elements after about 11 minutes, some solo instrument playing the descending thirds 
and the drum playing the zeros to orient what is happening. The drawing tracing the 
rhythms all the way to 10 is quite lovely, but too large to reproduce effectively here, 
so I will simply show the drawings I used to connect the unordered pairs in the cycles 
(0, 1, 2), (0 1, 2, 3), and (0, 1, 2, 3, 4) along with the first measures of the score. The 
(0, 1, 2) cycle, for example, begins with the third that begins on beat 0 and drops on 
beat 1, then the third that begins on 0 and drops on 2, then the third that begins on 
beat 1 and drops on beat 2, and so on, until all six unordered pairs have been heard. 
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Rhythms from a homometric set 
 
Another piece devoted to mathematical rhythms is a series called Knock on Wood, 
devoted exclusively to wooden sounds, and conceived at first as a sound installation 
containing several different elements. One of these elements or pieces is called 
Knock on Wood: “Solution 571”, because the piece comes directly from 
Jedrzejewski’s list of homometries. It is the 571st of the 572 solutions of homometric 
subsets possible with nine-beat rhythms in an 18-beat cycle. In solution 571 four 
different combinations all have the same interval content. Two are complements of 
the other two, and all four can be read either clockwise or counter-clockwise, so I 
drew eight circles. It doesn’t make sense to begin on a silence that can not be heard, 
and if one begins in the middle of sequence of four notes, one distorts the four 
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adjacent notes into 1 plus 3 or 2 plus 2, so there are only five good starting points in 
each circle. If the eight circles are multiplied by five starting points and two directions 
we have a total of 80 rhythms, which is quite enough to make a modest wood block 
solo. Here we can see a few of the 80 rhythms, in no particular order, along with the 
drawings behind them. Note that in each case one finds three adjacent notes once, 
two adjacent notes twice, and two isolated notes. This is of course because they are 
all homometric, and the lengths of the rests between are also controlled by the 
homometrie. Despite the apparent difference between specific rhythms, one does 
hear a mathematical unity.  
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Deep Rhythms 
 
The idea of deep rhythms began a long time ago, as mentioned before, but its 
general importance has become clear only recently, particularly in the book of 
Godfried T. Toussaint, also mentioned before. Taking this principle into the world of 
rhythm, Toussaint gives many examples of deep rhythms, particularly in cycles of 16 
beats, and these rhythms are generally enticing, often reminiscent of salsa beats, 
and never something Beethoven would have written. One such example is 
(0,3,6,9,12), in which we find one distance of 4, two distances of 7, three distances of 
6 and four distances of 3:   

 
 
 
Note that this deep rhythm is also a good example of almost even and of the 
rhythmic oddity. These ideas are quite interrelated, though it is not quite sure why. 
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I wanted to find a complete list of deep rhythms, at least those occurring within cycles 
of 16 beats or less, and I thought that would be easy, but it wasn’t. I was somewhat 
reassured when I wrote to Toussaint and found that he wasn’t sure about the 
complete list either. I did find about 10 deep five-beat rhythms that I liked though, and 
that was enough to make part of a sound installation Knock on Wood (2018). 
Sometimes you just have to make do with incomplete sets. 
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