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I was pleased to learn that it would be possible to make a little exhibition of 
drawings here in Berlin, as well as presenting my lecture, because the Networks 
I’m working on now are as much visual as aural, and I think these structures 
need to be seen as well as heard. Of course, those who are simply reading this 
text will only see the drawings that are included here, but hopefully this will be 
enough to convey the general idea. 
 
Many composers make graphs, tables, or charts of some sort to calculate the 
details of their music, and I have been doing this for a long time, but finding the 
system visually has become a particularly important part of the Networks I have 
been working on since 2005, which have mostly to do with harmony and with 
defining groups of chords. My earlier music also sometimes concerned chord 
groups and combination theory, the most obvious example being The Chord 
Catalogue, but this interest took a new turn when a young Dutch Composer, 
Samuel Vriezen, showed me how he had composed a group of 11 five-note 
chords such that each chord had two notes in common with each other chord, 
and a mathematician friend, Jean-Paul Allouche, suggested that I investigate 
“block designs.” This is a relatively new kind of combination theory that I don’t 
think Vriezen had ever studied either, and which, in fact, is not widely know 
even to mathematicians. The principles are rather simple, however, and after 
studying the subject a bit, I realized that these networks of subgroups or chords 
could lead me to rich and yet unknown musical materials. 
 
Let me begin with the example of a block design known as (7, 3, 1). That means 
that 7 notes (elements) are divided into chords (sub-groups) of 3 notes, in such 
a way that each pair of notes comes together in one chord. One can do it in this 
way: 
 



(1,2,3), (3,4,7), (2,4,6), (2,5,7), (1,6,7), (3,5,6) (1,4,5), 
 
but one can also solve the problem in this way: 
 
(1,2,4), (2,3,7), (4,6,7), (2,5,6), (1,5,7), (1,3,6), (3,4,5). 
 
How can we see the relationships between these three-note chords? Is there a 
way to combine the two solutions? How do we find the beginning, the end, the 
continuity of the logic? How can we find the nerve of the system? Well, the 
answer to all these questions is to begin drawing pictures. In this way I found 
four different representations, all of which are in the exhibition, but I particularly 
want you to see the network in this way, where the white triangles represent the 
first solution, the gray triangles represent the second, and the 14 chords are all 
shown twice: 
 

 
 
Of course, mathematicians have been studying such structures for a long time, 
and I was fortunate to make contact with two mathematicians from the 
University of Vermont who took an interest in my drawings and wrote some 



comments, which are posted along with the drawings in the exhibition space. 
About this particular drawing, Jeffrey Dinitz, who specializes in combinatorial 
designs, and Dan Archdeacon, who studies topological graph theory, sent me 
the following text: 
 
This shows four representations of the universal coverings of K7 (the complete 
graph on 7 vertices) on the torus. In each case the seven shaded triangles form 
one Fano plane (the projective plane of order 2) and the seven white triangles 
form another. One can see here how (7,3,2) combines two (7,3,1) systems, one 
of white triangles and one of shaded triangles.  
 
To hear this network, we can simply assign the numbers to a scale of seven 
notes, and read the white circle followed by the gray circle, as I have done in the 
music notation below. Of course the symmetries would be the same using any 
seven-note scale, but I rejected dozens of candidates before finding this one, 
where the notes and chords sound truly equal and the music seems to 
homogenize. I am going to play the 14 chords on the piano, but of course it is 
not really piano music, and could be heard equally well on another instrument 
(or instruments): 
 

 
 
Could you hear the order? Could you hear that each note occurred the same 
number of times, that each pair of notes came together the same number of 
times, that everything is in perfect balance? Well, I must admit that I don’t really 
hear this either, but it is remarkable how clearly one hears if there is a mistake, 
so the ear is somehow sensitive to what is going on. And of course, this is a 
new way of listening, and any new way of listening does require a bit of training. 
No doubt in a few years we will have learned how to perceive such patterns 
more easily. 
  
Another question is whether we can call this a piece of music. I didn’t really 
compose it. I simply found it within a mathematical phenomenon, and for some 
time I felt that such things were simply models or prototypes, rather than actual 
pieces of music. At the same time, when I try to expand the progression, to add 
a melody, to move the music through a series of variations, the result always 
seems vulgar. The sequence is much more satisfying in its natural state, and 



since the natural numbers really are a part of nature, this can be regarded as a 
little gem found in nature. It is quite lovely just as a diamond in the rough and 
does not need to be cut and polished.  
 
Another block design with musical potential is (13,4,1), a collection of 13 four-
note chords. In other cases there are many ways of forming a group of 
symmetrical subgroups, but in the case of (13,4,1) there is only one solution. Of 
course, you can always exchange the twos with the eights, for example, but this 
will just be a morphism of the basic block design. Again each note and each 
pair of notes occur the same number of times, and again it seems necessary to 
draw some pictures in order to uncover the nerve of the system. In this case the 
essence of the structure seems to emerge best in the following diagram. Let us 
listen to the sequence of two times 13 chords by alternating between the inner 
and the outer circles. You probably won’t be able to count fast enough to be 
sure that all 13 notes occur the same number of times, and that the chords 
appear twice each, but I think you can hear that the music is somehow turning 
in a circle, and if I play a wrong note, you will hear that there was a mistake 
 
 

  



 
 
The comment offered by Dinitz and Archdeacon concerning (13,4,1) is probably 
too technical for most musician readers, but let me quote it for those who will 
understand: 
 
This is the projective plane of order 3. It can be obtained from the (9,3,1)-design 
by adding 4 new points {∞1 , ∞2 ,∞3 ,∞4} and a new block containing them.  Then 
to each block in the  ith  parallel class of the (9,3,1) design add the point ∞i . 
 
Again the resulting chord sequence is terribly short to be considered a musical 
composition, but it is a complete system nonetheless, and as I continue to study 
all these networks of chords, I have gradually concluded that such systems 
must be considered finished objects. If I try to “develop” the material the way 
composers are taught to do, I don’t really improve anything. Now, in August 
2007, as I revise this text for the printed edition, I am also preparing an edition 
of about a dozen of these little Networks.  
 
Of course, some combinatorial designs have more blocks and take more time. A 
good example is (9,3,1). The basic solution here consists of only 12 three-note 
chords, in which each note is used four times. But this group of 12 chords can 
be expanded to what the mathematicians call a large (9,3,1), combining seven 
different solutions to the problem. Now we have a system of 7 * 12 = 84 chords, 
in which all 84 combinations of the nine notes, taken three at a time, are 
included exactly once. That is difficult to draw, so I’ll just give you the music. 



 
 
I will not take the space here to include the three unique solutions of (10,4,2), 
but since we are so attached to our 12-tone chromatic tradition, I want to show 
you my realization of (12,4,3), so that you can see some 12-tone music that 
comes directly from a block design. Incidentally, Jeffrey Dinitz told me that 
mathematicians can prove the existence of 14 million non-isomorphic solutions 
for the (12,4,3) problem. Many of these are known as “resolvable,” which means 
that the 33 chords of this group can be divided into 11 groups of three chords, 
each of which includes all 12 notes. Here is the drawing and the music notation 
for my (12,4,3). It is resolvable, so each measure, each group of three chords, 
contains the complete scale: 
 



 

 
 



It is also possible to form a large (15,3,1), which makes the 13 * 7 * 5 = 455 
chords of Kirkman’s Ladies, a 13 – minute piece that I wrote in 2005. Another 
block design, known as 4-(12,6,10) produced the 330 chords of Block Design 
for Piano (2006), an 18-minute composition. Now I am completing a Septet, 
which transforms the 11 chords of (11,5,2) into 10 different solutions. And 
enough new possibilities arise that I expect to be exploring this area for some 
years to come. 
 
This is of course only a miniscule introduction to block designs and to the chord 
groups one can find within this branch of combination theory. The definitive 
book on the subject, the Handbook of Combinatorial Designs (Chapman and 
Hall/CRC, second edition 2007), edited by Charles J. Colbourn and Jeffrey H. 
Dinitz, provides about a thousand pages of supplementary reading for those 
who wish to go further.  


